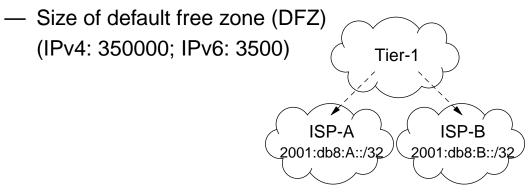
What is HIP ?

A brief introduction to the Host Identity Protocol

5. Aug 2010

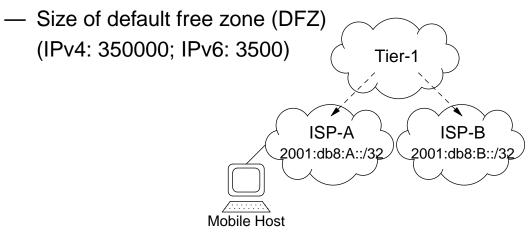
Holger.Zuleger@hnet.de


Host Identity Protocol (RFC 5201)

- Yet another locater/identifier split mechanism PIP, ILNP, IPNL, TRRP, APT, GSE/8+8, Shim6, LISP(+ALT), MOBIKE, GLI-Split
- Host based approach Some others are network based (like LISP)
- Enables multihoming
- Mobility IPv4 and IPv6
- Uses public key as identifier Or a hash of it
- Adds a new namespace Domain Name (User), HIT (Identifier), { IPv4 address | IPv6 address } (Locator)
- Simple key exchange protocol for IPsec

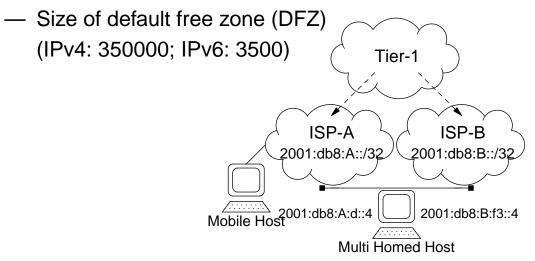
Locater / Identifier

IP address is used as Identifier and Locater


- Identifier
 - OS nedds a way to bind incoming ip packets to application
 - Both ends use 5-tuple as endpoint identifier
 - On IP address change the connection go stale
- Locator
 - Prefix aggregation needed on AS boundary
 - Just a handful prefixes in IPv6 per AS

Locater / Identifier

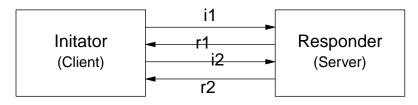
IP address is used as Identifier and Locater


- Identifier
 - OS nedds a way to bind incoming ip packets to application
 - Both ends use 5-tuple as endpoint identifier
 - On IP address change the connection go stale
- Locator
 - Prefix aggregation needed on AS boundary
 - Just a handful prefixes in IPv6 per AS

Locater / Identifier

IP address is used as Identifier and Locater

- Identifier
 - OS nedds a way to bind incoming ip packets to application
 - Both ends use 5-tuple as endpoint identifier
 - On IP address change the connection go stale
- Locator
 - Prefix aggregation needed on AS boundary
 - Just a handful prefixes in IPv6 per AS


Host Identifier and HIT

- A host identifier is the public part of an asymetric key (RSA or DSA)
 - Size of identifier depends on key length / algorithm
 - Representation depends on key algorithm
 - A more generalized presentation would be more handy
- The host identity tag (HIT) is the hash of the host identifier
- A HIT is the 128 bit representation of a host identifier
 - Constant length
 - Same size as an IPv6 address
 - Fits in a socket data structure used by the kernel
 - Could be represented as an (reserved) IPv6 address
 Overlay Routable Cryptographic Hash Identifier (ORCHID)
 - The ORCHID prefix used is 2001:0010::/28 (RFC4843)
- Legacy applications can use the HIT instead of an IPv6 address

HIP Session Setup

• Base exchange

Just 4 packets to initiate a HIP session

- Makes HIP DoS resilient puzzle question/answer in r1/i2 message
- Diffie-Hellman Key Exchange In r1, i2 packets
- Authentication
 In i2, r2 packets
- Protocol number 139 has been assigned to HIP
- Extended Exchange for IP address registration/update For mobile/multihomed hosts
- Diet Exchange (DEX) under discussion (draft-moskowitz-hip-rg-dex-02)) good to be used by sensor devices or for mac layer security

HIP and DNS

- HIP can use DNS to map hostnames (FQDN) to a HIP identity
- Client queries for HIP record in addition to an A and/or AAAA record
- HIP RR provides three types of information
 - a. The HIP identity, which is the public part of an asymetric key
 - b. The HIT (host identity tag), which is a hash of the Hi
 - c. Optional a rendezvous server (for mobile hosts)
- Example RR (Mobile Host)

xt5.hznet.de. IN HIP (2 2001001781381AE2B2BC542EEE53CAB AwEAAb1SN58eG29jZcY8H02HPQXh6UIfSMvFF+4BM8n S/Za6s2yRU0+wvSMX0HGShe6E3RD2t7uKF9cbsSz4JU 5J8YP2/DpJREEGR3AWBXVVcLUq06xS3XmeP0vck/oQZ HtNzjRjy11ey5KiH706jDwJBXfGuUcpsiI7qHTzu8tJ Va8n max.hznet.de.)

• DNSSEC is necessary for secure binding between FQDN and HIT

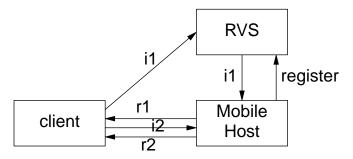
And now to something completely different...

The Root Zone is signed since 15. July 2010 20:50 UTC

HIP and DNS (2)

• HIP Test Server

crossroads.infrahip.net.	AwEAAc 40G2N+ rWXDpY	2 2001001BA9BEC6A634E58361C07FA990 p20IA68skk+yPtU+UBtvScsntTvknaaXMPmJi yszHOm/DWN7GyYZDPPsUURYWu6r3u7pzIub7J eLIcZmr++D0ENKI9nUs1bPdfgeQTgCu00Bf1K AQaF64rmSP/L666BEZwfTVWYgfiqZrJNcrFwn
crossroads.infrahip.net.	AAAA	2001:708:140:220::7
crossroads.infrahip.net.	A	193.167.187.134


• Mobile Host

xt5.hznet.de.	IN HIP (2 2001001781381AE2B2BC542EEEE53CAB				
	AwEAAb1SN58eG29jZcY8HO2HPQXh6UIfSMvFF+4BM8n				
	S/Za6s2yRU0+wvSMXOHGShe6E3RD2t7uKF9cbsSz4JU				
	5J8YP2/DpJREEGR3AWBXVVcLUq06xS3XmePOvck/oQZ				
	HtNzjRjy11ey5KiH706jDwJBXfGuUcpsiI7qHTzu8tJ				
	Va8n				
	<pre>max.hznet.de.)</pre>				

max.hznet.de.	IN	А	213.239.204.36
max.hznet.de.	IN	AAAA	2001:6f8:900:2af::2

HIP Mobility

- Mobile host needs rendezvous server (RVS) for initial reachability Mobile host register his current locator (ip address) at RVS
- Rendezvous server name is (optional) part of HIP DNS record Locator hint
- HIP initiator (client) sends first packet of HIP base exchange to RVS
- RVS forwards the packet to the host (if host is actually registered)

- Mobile host uses HIP base exchange to register his address at RVS
- Mobile Host send update packet to client if IP address is changing RVS has to be informed as well (Proposal to send UPDATE/CLOSE via RVS)

HIP as a key exchange protocol

Similar to ISAKMP/IKE

Disadvantages (Limitations)

- Only transport mode available Because HIP is for end to end communication this is intended
- Only one SA per host
 - More than one SA possible (e.g. one HI per application) but unusual
 - Not the same granularity like ISAKMP
- No AH, just ESP mode (but with null encryption)

Advantages

- Just 4 packets needed to authenticate peer and exchange key material Same as IKEv2
- No certificates needed
 - HIP uses key as identifier
 - No binding between key and identifier (ip address) necessary

HIP and IPsec ESP

- HIP uses IPsec ESP to carry the data traffic (RFC5202)
 - Pair of SA is bound to Host Identifier; SPI is used as index into SA table
 - No need to transfer the host identifier within each packet
 - Both endpoints have a local database for mapping of SPI to host identifier
- Other mechanism possible but not yet defined
- Only 2 transforms mandatory AES with SHA-1 and Null encryption
- IP addresses could be changed in between a session
 - HIP UPDATE message to inform peer
 - Rekeying allowed during ip address change
 - Protocol change possible (IPv4 \Leftrightarrow IPv6) but not defined yet
- Good for mobility
 - MIPv6 no longer needed
 - Session persistence because ip address is no longer used as identifier

Applications of HIP

- Host Mobility Even on different transport protocols (IPv4/IPv6)
- Multihoming
- Server load balancing / High Availability Shared HI on clustered servers
- End-to-end Security
- Firewall rules based on Host identifier Firewall for mobile users
- Long term session persistence SSH, IMAP
- Continuous media streaming (Voice/Video) over different L3 networks mobile / fixed convergence
- Apples "Back to my MAC" Kerberos, TSIG, TLS, IPsec, DDNS, DNS-SD, DNS Push, NAT Traversal IPv6 ULA used as Identifer, ...

References

RFC

- 4423 Host Identity Protocol Architecture (May 2006)
- 5201 Host Identity Protocol (April 2008)
- 5202 Using the Encapsulating Security Payload Transport Format with HIP
- 5205 Host Identity Protocol (HIP) Domain Name System (DNS) Extension
- 5206 End-Host Mobility and Multihoming with the Host Identity Protocol
- 4843 Overlay Routable Cryptographic Hash Identifier (ORCHID)

Implementations

InfraHIP / HIPL

Ubunto, Fedora, CentOS, Android, Maemo, OpenWRT (http://infrahip.hiit.fi/)

OpenHIP

Linux / Windows / Mac (http://www.openhip.org/)

HIP for FreeBSD

(http://www.hip4inter.net/)

Comparison / Interoperability

http://www.openhip.org/wiki/index.php?title=Interoperability

$H Z \Pi E T$

DNSsec, VolPsec, IPsec, XMPPsec, SMTPsec, WLANsec ...

... DKIM, Kerberos, IMAP, LDAP, ENUM, SIP, ...

... NTP, DNS, DHCP, IPv6, Routing, Switching

HZ

Holger.Zuleger@hznet.de

CONTENTS

Host Identity Protocol (RFC 5201)	1 2
Locater / Identifier	23
Host Identifier and HIT	4
HIP Session Setup	5
HIP and DNS	6
	7
HIP and DNS (2)	8
HIP Mobility	9
HIP as a key exchange protocol	10
HIP and IPsec ESP	11
Applications of HIP	12
References	13
· · · · · · · · · · · · · · · · · · ·	14