

# IPv6 Layer3 Mobility & Security

#### Deutscher IPv6 Kongress 2012

10/11 May 2012 Frankfurt

Holger.Zuleger@hznet.de

#### Data network usage

HZ

- Usage patterns of data network mobility
  - $\leq$  199x Fixed line usage (PC/Server) Ethernet/Dial-in access
    - 200x Fixed mobile usage (Laptop) Ethernet/Dial-in/WiFi
    - 201x Mobile usage (Smartphones/Tablet) 3G/4G/WiFi
  - ≥ 2015 Mobile network usage (Mobile Router Car/Train/Ship)
- Today, mobility is based on Layer 2 technologies
  - WiFi roaming between access points
  - 3G/4G GTP tunnel to GGSN/PGW
- Issues with layer 2 mobility
  - scaling problems
  - suboptimal traffic flow (3G/4G)
  - no mobility between different access technologies (3G/WiFi) or ISPs
- Why not use layer 3 mobility ?

## The Locator / Identifier Problem

IP address is used as Identifier and Locator

#### Identifier part

- OS needs a way to map incoming IP packet to application
- Both peers use 5-tuple as endpoint identifier

```
      $ netstat -n -t

      Proto Recv-Q Send-Q Local Address
      Foreign Address
      State

      tcp
      0
      0 88.198.13.165:43162
      74.125.39.125:5269
      ESTABLISHED

      tcp6
      0
      10920 2a01:4f8:130:1261::5222
      2a00:0:1801:1:216::7744
      ESTABLISHED
```

• The application associated with the tuple is shown by netstat -p

```
# netstat -t -A inet6 -p
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program na
tcp6 0 10920 2a01:4f8:130:12:5222 2a00:0:1801:12:7744 ESTABLISHED 16450/c2s
```

- If IP address or port is changed, session is stalled That's only one reason why NAT (NAPT) is evil (just like stateful firewalls)
- L3 mobility issue: IP address prefix depends on subnet

# The Locator / Identifier Problem

IP address is used as Identifier and Locator

#### Locator part

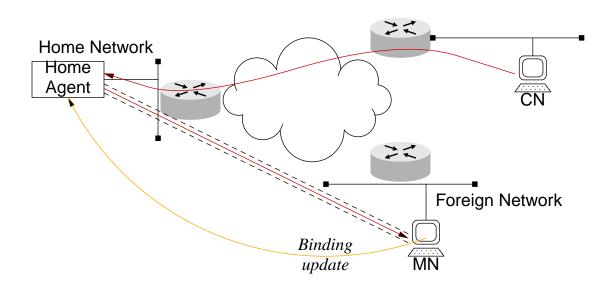
- For scalability reasons IP adresses are aggregated Nevertheless the IPv4 full table has about 500,000 prefixes
- Address aggegration is more efficient in IPv6 Just because of huge address space
  - All customers of one ISP using the same prefix DTAG 2003::/19, VF 2a00::/22
  - Customer of the same region (pop) are using the same prefix e.g. out of one /32
  - All subnets of one customer site are using the same prefix Out of the same /48
- Change of subnet/pop/ISP means change of IP address also All active sessions get stuck

## Layer 3 mobility solutions

#### Requirements

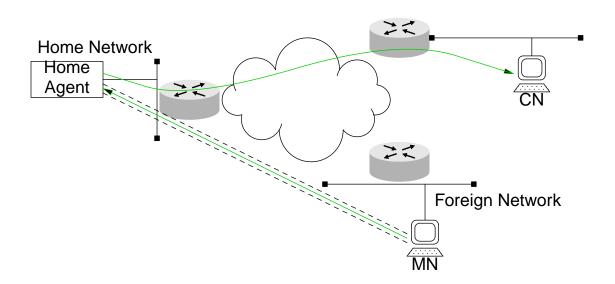
- Roaming across different access technologies WiFi, WiMAX, UMTS, LTE, fixed
- Seamless handover between layer 3 networks
- Application continuity
   Session persistence
- Reachability of mobile nodes Even if they are not connected to the home network
- Mobility of both endpoints

#### Implementations


- MIP6 Mobile IPv6
- HIP Host Identity Protocol
- And others ...

### MIPv6 Definition and Terminology

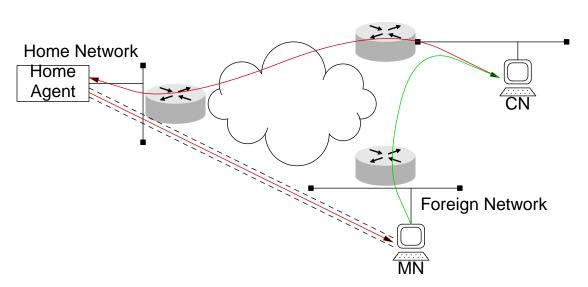
- IPv6 Mobility basics
  - RFC3775/RFC6275: Mobility Support in IPv6 (June 2004 / July 2011)
  - RFC3776: Using IPsec to Protect Mobile IPv6 Signaling between Mobile Nodes and Home Agents (Updated by 4877)
- Mobile Node (MN)
- Home Address (HoA)
   A (static) IP address out of the mobile nodes home network
- Care of Address (CoA) The physical IP address of a MN while visiting a foreign network
- Home Agent (HA)
   A router on the home network which represents the MN
- Correspondent Node (CN) A peer node with which a MN is communicating (mobile or stationary)
- Binding


Association of the home address with the care-of address of a MN

#### Bidirectional Tunnel Mode (1)

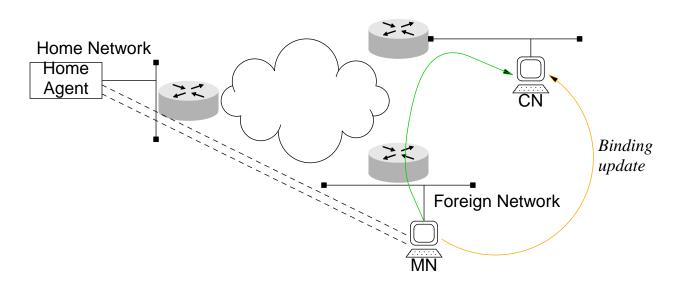


- MN connects to foreign network and gets a CoA
- MN sends binding update to HA Should be secured by IPsec ESP in transport mode
- HA uses proxy neighbor discovery (IPv6 equivalent of proxy ARP) to represent the MN in the home network
- All traffic destined to the MN will be encapsulated in a IPv6-in-IPv6 Tunnel and sent to the CoA of the MN


#### Bidirectional Tunnel Mode (2)

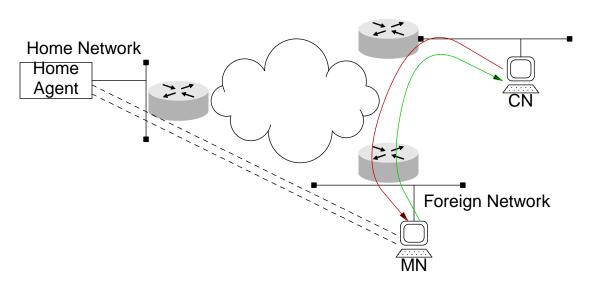


- Traffic from the MN uses the same tunnel in reverse mode
- Results in suboptimal routing, especially if both peers are far away from the home network
- Only HA and MN have to do some special packet handling MIPv6 is completely transparent for CN




# Triangle Routing ?

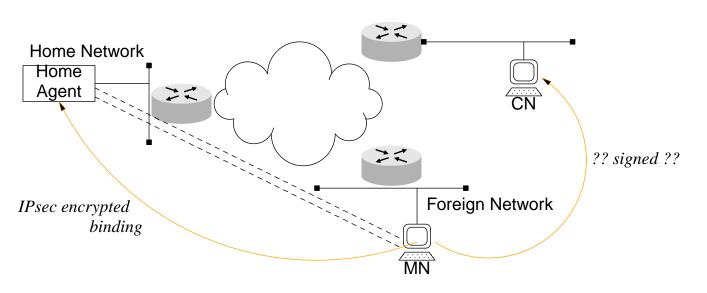



- Traffic from MN is directly sent to CN
- MIPv4 solution
- Problem: Outgoing traffic can't use the HoA as source address Anti-spoofing ACLs at the foreign network usually prevent this
- Suboptimal routing anyway
- MIPv6 Solution: Route Optimization

## Route optimization (1)

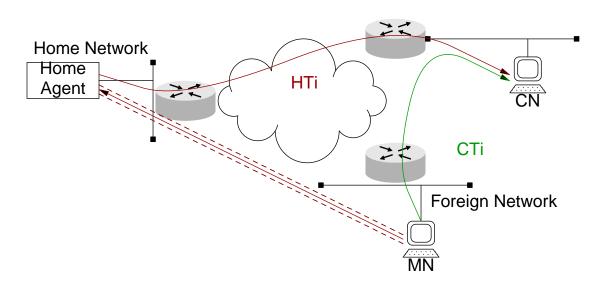


- MN sends binding update to CN
- MN sends traffic to CN with CoA as source address This is to bypass the anti spoofing ACLs at the foreign network
- Packet contains an HoA destination option
- CN replaces the source address with the home address before passing the packet to upper layer protocols


# Route optimization (2)



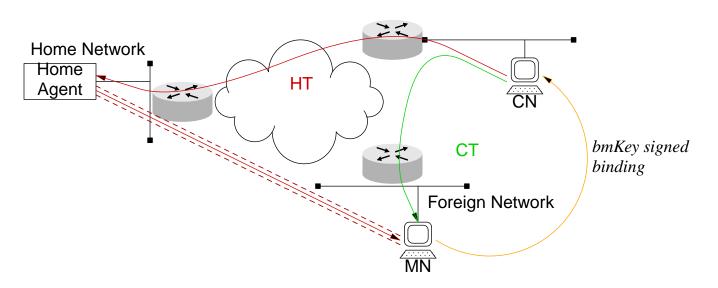
- CN sends traffic to MN with CoA as destination address
- Packet contains a special Routing Header with HoA as second hop
- MN removes the routing header and "forwards" the packet to the next hop specified by the routing header
- Upper layer protocol is only aware of HoA
- But: Binding update **must** be secured




### **Secure Binding**



- Trust relationship between MN and HA IPsec with ESP in transport mode must be used for binding update message
- No trust relation between MN and CN Return Routeability mechanism used to prove the reachability of MN


#### Return Routeability Procedure (1)



- MN sends two messages with a cookie to CN
  - Home Test init (HTi) is sent via HA (traffic to HA must be encrypted)
  - Care-of Test init (CTi) is sent directly to CN
- CN uses pre-generated key and nonce to build two keygen tokens (Key: random number of 20 octets; Nonce: random octet string of any length)

home keygentok := FIRST (64, HMAC\_SHA1 (key, (HoA | nonce | "0")))
care-of keygentok := FIRST (64, HMAC\_SHA1 (key, (CoA | nonce | "1")))

#### Return Routeability Procedure (2)



- CN sends keygen tokens and cookies back to MN Home Test (HT) and Care-of Test (CT) messages
- MN builds binding message key

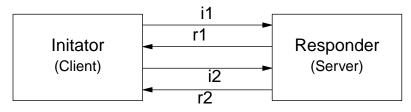
```
bmKey := SHA (home keygen token | care-of keygen token)
```

- MN sends binding update message signed with bmKey
- CN can prove that the MN is reachable via both paths

### MIPv6 Summary

- Two IPv6 adresses used to overcome the Locator/Identifier problem
  - Home address is used as identifier
  - Care-of address is used as locator
- Suboptimal traffic flow if CN does not support MIPv6
- Direct communication between MN and CN is possible Return Routeability procedure used to exchange binding key
- Solves most of the security challenges introduced by mobility
  - IPsec has to be used for traffic through the Home Agent tunnel
  - MIPv6 introduces no new security threats
- Extensions to MIP
  - Network based mobility solutions (Proxy Mobile IPv6) RFC5213
  - Dual stack mobility (RFC5555)
  - Multicast Mobility (Multimob WG)
  - Network Mobility (NEMO) RFC3963

### Host Identity Protocol (RFC 5201)


- Yet another locator/identifier split mechanism
- Host based approach Some others are network based (e.g. LISP+ALT)
- Enables multihoming
- Mobility IPv4 and IPv6
- Secure communication channel Simple key exchange protocol for IPsec
- Public key is used as identifier (instead of IP address) In fact, a hash of the public key is used
- Adds a new namespace
   Domain Name (User), HIT (Identifier), { IPv4 address | IPv6 address } (Locator)

### Host Identifier and HIT

- A host identifier is the public part of an asymetric key (RSA or DSA)
  - Size of identifier depends on key length / algorithm
  - Representation depends on key algorithm
  - A generalized presentation would be more handy
- The host identity tag (HIT) is the sha-1 hash of the host identifier
- A HIT is the 128 bit representation of a host identifier
  - Constant length
  - Same size as an IPv6 address
  - Fits in a socket data structure used by the kernel
  - Represented as a (reserved) IPv6 address
     Overlay Routable Cryptographic Hash Identifier (ORCHID)
  - The ORCHID prefix is 2001:0010::/28 (RFC4843)
- Legacy applications can use the HIT instead of an IPv6 address ! e.g. 2001:13:10bc:aed3:2a0a:e2f8:a645:6d3c

# **HIP Session Setup**

- Protocol number 139 is assigned to HIP
- Base exchange Just 4 packets to initiate a HIP session



- Makes HIP DoS resilient puzzle question/answer in r1/i2 message
- Diffie-Hellman Key Exchange In r1, i2 packets
- Authentication
   In i2, r2 packets
- Extended Exchange for IP address registration/update For mobile/multihomed hosts
- The HIP protocol is control plane only Data plane is IPsec (or SRTP)

### HIP and DNS

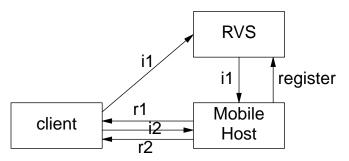
- HIP can use DNS to map hostnames (FQDN) to a HIP identity Distributed Hash Tables (DHT) are also supported
- Client queries for HIP record in addition to an A and/or AAAA record
- HIP RR provides three types of information
  - a. The HIP identity, which is the public part of an asymetric key
  - b. The HIT (host identity tag), which is a hash of the Hi
  - c. Optional a rendezvous server (for mobile hosts)
- Example RR (Mobile Host)

xt5.hznet.de. IN HIP ( 2 2001001310BCAED32A0AE2F8A6456D3C AwEAAeAdP1k64050S1AptjbshjL+jTd0yeiQFyVu Bb1c09JOKdrl/UrF362MCV4c2T7Bo/7rT8HYRhAb2 iVcvm5Bszy07uKU4fNTfUu8r2Nzti1QK8mk194HFZ 0IsJmR940MxEXQI05if2crV/RN2SfinbJUirfRe+H bM3BqdHSdGgT1 max.hznet.de. )

• DNSSEC should be used for a secure binding between FQDN and HIT BTW: The root zone is signed since July 15, 2010 20:50 UTC

# HIP and DNS (2)

#### • HIP Server


| crossroads.infrahip.net.                             | AwEAAcr<br>40G2N+y<br>rWXDpYe | 2 2001001BA9BEC6A634E58361C07FA990<br>20IA68skk+yPtU+UBtvScsntTvknaaXMPmJi<br>/szHOm/DWN7GyYZDPPsUURYWu6r3u7pzIub7J<br>eLIcZmr++D0ENKI9nUs1bPdfgeQTgCu00Bf1K<br>AQaF64rmSP/L666BEZwfTVWYqfiqZrJNcrFwn |
|------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| crossroads.infrahip.net.<br>crossroads.infrahip.net. | hvt5 )<br>AAAA<br>A           | 2001:708:140:220::7<br>193.167.187.134                                                                                                                                                                |

#### • HIP Mobile Host

|                          | 10800 I | <pre>eanswer +multi hip xt5.hznet.de<br/>N HIP ( 2 2001001310BCAED32A0AE2F8A6456D3C<br/>AwEAAeAdP1k64050S1AptjbshjL+jTd0yeiQFyVu<br/>Bb1c09JOKdrl/UrF362MCV4c2T7Bo/7rT8HYRhAb<br/>2iVcvm5Bszy07uKU4fNTfUu8r2Nzti1QK8mk194H<br/>FZ0IsJmR940MxEXQI05if2crV/RN2SfinbJUirfR<br/>e+HbM3BqdHSdGgTl<br/>max.hznet.de. )</pre> |
|--------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |         | N RRSIG HIP 5 3 10800 20120514041807 20120414041807 52469                                                                                                                                                                                                                                                              |
| <pre>max.hznet.de.</pre> |         | N A 88.198.13.165<br>N RRSIG A 5 3 10800 20120514041807 20120414041807 52469                                                                                                                                                                                                                                           |
| <pre>max.hznet.de.</pre> | 10800 I | N AAAA 2a01:4f8:130:1261::2<br>N RRSIG AAAA 5 3 10800 20120514041807 20120414041807 52469                                                                                                                                                                                                                              |

# **HIP Mobility**

- Mobile host requires rendezvous server (RVS) for initial reachability Mobile host register current locator (IP address) at RVS during base exchange
- Rendezvous server name is (optional) part of HIP DNS record Locator hint
- HIP initiator (client) sends first packet of HIP base exchange to RVS
- RVS forwards the packet to the host (if host is actually registered)



- Mobile Host sends update packet to client if IP address is changed RVS has to be informed as well
- Similar procedure is used for multihoming

#### HIP and IPsec ESP

- HIP uses IPsec ESP to carry the data traffic (RFC5202)
  - Pair of SA is bound to Host Identifier; SPI is used as index into SA table
  - No need to transfer the host identifier within each packet
  - Both endpoints have a local database for mapping of SPI to host identifier
- Other mechanism possible but not yet defined
- Only 2 transforms mandatory AES with SHA-1 and Null encryption
- IP address could be changed during IPsec session (association)
  - HIP UPDATE message to inform peer
  - Rekeying allowed during IP address change
  - Protocol change possible (IPv4  $\Leftrightarrow$  IPv6)
- Good for mobility
  - MIPv6 no longer needed
  - Session persistence because IP address is no longer used as identifier

#### Limitations

- HIP is used for end to end security so transport mode is used In fact most implementations use BEET mode (Bound End to End Tunnel)
- Only one SA per host
  - More than one SA possible (e.g. one HI per application) but unusual
  - Not the same granularity as ISAKMP
- No AH, just ESP mode (but with null encryption)

#### Advantages

- Layer 3 mobility
- No certificates needed
  - HIP uses key as identifier
  - No binding between key and identifier (IP address) necessary
- Only 4 packets required for peer authentication and key exchange Same as with IKEv2

HZ

**Documents** 

- 4423 Host Identity Protocol Architecture (May 2006)
- 5201 Host Identity Protocol (April 2008)
- 5202 Using the Encapsulating Security Payload Transport Format with HIP
- 5205 Host Identity Protocol (HIP) Domain Name System (DNS) Extension
- 5206 End-Host Mobility and Multihoming with the Host Identity Protocol
- 4843 Overlay Routable Cryptographic Hash Identifier (ORCHID)
- draft-henderson-hip-vpls

HIP-based Virtual Private LAN Service (HIPLS)

#### Implementations

InfraHIP / HIPL

Ubuntu, Fedora, CentOS, Android, Maemo, OpenWRT (http://infrahip.hiit.fi/)

**OpenHIP** 

Linux / Windows / Mac (http://www.openhip.org/)

**HIP for FreeBSD** 

(http://www.hip4inter.net/)

HZ

## Summary

- Two mobility solutions with different focus shown
  - MIPv6: Wide availability, works with any host (OS support)
  - HIP: End to end security and mobility solution
- Host based solution, no network support needed Except Home Agent in MIPv6
- Some security threats Most of them are similar to threats w/o mobility
- HIP adds end-to-end protection of the traffic
- Minor privacy issues Mobile Node is trackable by home agent or rendezvous server
- Anyway, for MIPv6 or HIP to work we need IPv6 capable networks
- So:

#### Let's start to rollout IPv6



#### $H Z \Pi E T$

DNSSEC, IPsec, VoIPsec, XMPPsec, ...

... DKIM, Kerberos, Radius, NTP, DHCP, DNS, ...

... IPv6, Routing, Switching, 802.1x

ΗΖΓ

Holger.Zuleger@hznet.de

#### CONTENTS

|                                           | 1  |
|-------------------------------------------|----|
| Data network usage                        | 2  |
| The Locator / Identifier Problem          | 3  |
| The Locator / Identifier Problem          | 4  |
| Layer 3 mobility solutions                | 5  |
| MIPv6 Definition and Terminology          | 6  |
| Bidirectional Tunnel Mode (1)             | 7  |
| Bidirectional Tunnel Mode (2)             | 8  |
| Triangle Routing ?                        | 9  |
| Route optimization (1)                    | 10 |
| Route optimization (2)                    | 11 |
| Secure Binding                            | 12 |
| Return Routeability Procedure (1)         | 13 |
| Return Routeability Procedure (2)         | 14 |
| MIPv6 Summary                             | 15 |
| Host Identity Protocol (RFC 5201)         | 16 |
| Host Identifier and HIT                   | 17 |
| HIP Session Setup                         | 18 |
| HIP and DNS                               | 19 |
| HIP and DNS (2)                           | 20 |
| HIP Mobility                              | 21 |
| HIP and IPsec ESP                         | 22 |
| HIP as a key exchange protocol (like IKE) | 23 |
| HIP References                            | 24 |
| Summary                                   | 25 |
|                                           | 26 |
|                                           |    |